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The SimTools project members are Travis Drayna, Laura Lang, Rachel
Ertl, Louie Long, Brian Jean, Henry Stam and Wally Atterberry.
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SimTools Project Objectives

• End-to-end simulation data management
– Enforce a consistent simulations process to help ensure differences

in results are real and not the product of different data treatments.
– Provide traceability of the simulation data and repeatability of the

simulation process.
– Provide controlled variation of input data and analysis.

• Provide ”force multipliers” for analysts.
– Enable concise high-level problem descriptions.
– Run multiple physics codes from a single problem description.
– Automate input processing, job control and results analysis.

• Rapidly answer questions requiring hundreds or thousands
of simulations.
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We accomplish this by developing a language to describe the
process for managing the simulations required for an analysis.

We have guidelines for developing this language.
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Good Software Practices for Scientific Analysis

• Once and only once – Define source data and/or relationships
only once.

• Maintain relationship metadata – Explictly define relationships
among input data.

• Human-readable input – Easily verify source data, relationships
and processing. Brevity.

• Do not store generated data – Script driven operation

source data+ script = problem setup

• Distinguish between data and modeling choices – Changing
modeling choices should be straight forward.

• Open architecure – New capabilities can be added without the
assistance of the development team.
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Problem

• An analysis can require hundreds of simulations.
• Each simulation requires lengthy input files. For a 3D problem

with 1000 vertices in each direction, we require the coordinates
of 109 vertices. At 24 bytes per vertex, that is 24Gb.

• The coordinate values are the wrong language for thinking about
the problem.

• We need a language that describes the pattern of the mesh
coordinates concisely to promote understanding, repeatability
and traceability.

• The same argument applies to material properties, control of the
solution algorithm, . . . — to every aspect of the problem. The
language that we use to describe the simulation influences how
we think about the problem.

• The role of the SimTools project is to develop a language for
problem solving that improves the efficiency and capability of our
users.
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Solution

• We start with Python, a complete and capable language.
• We add modules that contain nouns (objects) and verbs

(methods) that pertain to physics simulations – essentially a
glossary of available language.

• Users write scripts using the Python syntax with the SimTools
language to describe their modeling process.

• The SimTools project looks for verbose and complicated
constructs in the users work as opportunities to add to the
language in a way that improves traceability and repeatability.

• The biggest trap is making easy things easier and there by
making hard things impractical. Our goal is to make the hard
things practical.
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Outline

suite tools with parameter
set

common data and controls

problem specific data and
controls

geometry tools
input file tools
meshing tools

input files
for simulation
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We can break down our tools for managing simulations into four
categories, tools that

• Create and manage geometry for experiments (ingen.gwiz,
ingen.gwiz.solid, etch, osito, calico),

• Support the setup of suites of calculations (ingen.suite, ingen.csv),

• Construct input files in a robust manner (ingen.tengwar)

• And build boundary fitted meshes (ingen.altair, charybdis).
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Geometry

1. Contour file format
2. Reading contour files
3. Creating contours in Python
4. Painting solid geometry and parts
5. Multiple, related geometries
6. Contours and parts
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1. The contour file format is the best format we have for capturing
pedigree – information about where the data comes from in an easy to
check form.

2. Once you have a directory of contour files, reading them with
ingen.gwiz is simple.

3. Sometimes the geometry is easier to create by an algorithmic process
and ingen.gwiz has commands to do that.

4. If one does not intend to make a mesh conform to geometry, then the
geometry can be constructed as volumes using ingen.gwiz.solid for
various primitive geometric objects and their unions, intersections and
differences. Calico calculates fractions of materials in zones from the
volumes. Parts are objects that combine the geometry and material
information. We can create parts using the solids combined with
material objects.

5. For related experiments, ingen.lcars reads from a directory structure in
a manner that allows the simulations to share geometry.

6. We can create parts using contours combined with material objects.
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Geometry – Contours – Contour File Format

The contour file format defines a
contour as a sequence of
directed curvilinear pieces (r -z,
r -θ, circle, ellipse, line and
mirror).

piece =

line(start=(1.0cm, 0.0cm),

end=(3.0cm, 1.0cm)

Los Alamos National Laboratory January 6, 2020 | 15



The basic component of a contour in the contour file format is the piece.
We can define a piece as a line, an arc, a table or other primitive. A
contour consists of a sequence of these pieces linked together. Using a
sequence of pieces lets us describe complicated contours.
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Geometry – Contours – from .contour File to Python

Given a directory named geom with a collection of .contour files, the
Python to read the files is:

from ingen import init, gwiz

init(globals(), None)

gwiz.loadDirectory(’geom’,

[("*", gwiz.noRule(), gwiz.nDistribRule(5))],

cntr)
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• Our collection of tools is made available in a collection of Python
modules which can be imported. In the remaining examples, the import
statements will not be shown in the interest of brevity.

• We provide an init method to create a conventional set of namespaces.
Users can create additional namespaces, but at this time our graphical
interface uses the conventional namespaces for visual display.

• Finally, a single command reads the contour files and assigns a
resolution to the contours. We have found it useful to be able to specify
distinct resolutions for tabular pieces and analytic pieces. The noRule
shown uses the points in the tabular pieces without additional spline fit
points). The nDistribRule shown uses 5 points for each analytic piece.

• Typed namespaces are containers for typed objects. As we name
objects, there tend to be many objects that ought to get the same name
– namespaces help us avoid name collisions. They provide a
mechanics that groups objects within the language in a manner akin to
prefixed variable names: cntrC1. The init method defines several
default namespaces: pnt, cntr, reg, seg, blk, blk1, mat, sid, per and prt.
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Geometry – Contours – Contours Constructed in Python
Directly

p2 = gwiz.rzPoint((1.0, 0.0))

p3 = gwiz.rzPoint((3.0, 1.0))

cntr.c1 = gwiz.line(p2, p3)
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For contours best described by a process, we can create and modify
contours with the gwiz library.

In this example, we define points with gwiz.rzPoint and connect them to
make a line with gwiz.line.
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Geometry – Constructive Solid Geometry – CSG

generic = materials.generic()

Cu = generic()

reg.s1 = solid.sphere((0.0, 0.0, 0.0), 2.0)

reg.s2 = solid.sphere((0.0, 0.0, 0.0), 1.0)

reg.diff = reg.s1-reg.s2

myManifest = parts.manifest(reg, prt)

myManifest.diff(Cu(density=9.0))
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For geometry that we will not mesh, we can specify it via constructive solid
geometry using the gwiz.solid library. We support a variety of primitive
shapes including spheres, boxes, spun tabulars, ellipsoids, cones, . . . .
Further we can construct more complicated volumes via set arithmetic
with unions, intersections and differences.
In this example, we create two primitive spheres with gwiz.solid.sphere
and subtract them (a set difference operation) to make a hollow sphere.

After making the volume, we convert it into a part by combining the
geometry with material information.
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Geometry – Managing Multiple, Related Geometries

myLcars/:

./ ../ dirs/ exp1/ .lcars

myLcars/dirs:

./ ../ exp1@ exp2@ exp3@

myLcars/exp1:

./ c01.cntr@ c02.cntr@ c03.cntr@ c0[45].cntr@ exp2/

../ c01.contour c02.contour c03.contour c0[45].contour exp3/

myLcars/exp1/exp2:

./ c05.cntr@ c06.cntr@ c07.cntr@

../ c05.contour c06.contour c07.contour

myLcars/exp1/exp3:

./ c04.cntr@ c05.cntr@ c0[6789].cntr@ c10.cntr@

../ c04.contour c05.contour c0[6789].contour c10.contour
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• We use a directory structure as a tree data structure for storing multiple
related geometries.

• LCARS reads the information from the tree. Each LCARS directory
contains a .lcars file with the LCARS version, a dirs directory that acts
as a table of contents with file pointers to the lowest directory for each
experiments geometry, and a collection of directories that store the
geometry.

• Geometry for experiments in subdirectories is inherited from the
geometry in the parent directories. In the example shown, exp1 is a top
level experiment and its geometry consists solely of the contours in its
directory, c01 through c05. exp2 inherits c01 through c04 from exp1,
over writes c05 with the definition in its directory and adds contours c06
and c07.

• To allow for a distinction to be made between types and formats, the
type is given by a softlink in the directory c01.cntr indicates that c01 is
a contour while c01.contour indicates that it is a file in the .contour
format as opposed to a contour in a .rz format.
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Geometry – Managing Multiple, Related Geometries

Loading exp2 makes the contours c01, c02, c03, c04, c05, c06 and
c07 available, where c05 is the contour from myLcars/exp1/exp2
directory.

lib = lcars.open(’myLcars’)

experimentDictionary = lib.get(’exp1’, gwiz.Contour, None)

lcars.load(experimentDictionary,

(cntr, gwiz.noRule(), gwiz.nDistribRule(5)))
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Geometry – Contours – Parts

Going from contours to sides introduces topology:

parts.contours2Sides(cntr, sid)

outsideChain = parts.chain(sid.c03,sid.c01,sid.c02,sid.c04)

per.main = parts.stack(outsideChain).fill()

per.house1, per.house2 = per.main.cut(sid.c06)

del per.main

Adding materials to perimeters creates parts:

myManifest = parts.manifest(per, prt)

myManifest.house1(Cu(density=9.0))

myManifest.house2(Cu())
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• Sides are the beginning of topology. A side is a contour that knows the
areas on either side of it.

• A sequence of sides is a chain.

• A closed chain is a perimeter.

• The advantage of the perimeter over the contour is that it identifies a
region in space – the geometric portion of a part. The advantage of a
side is that it can identify the perimeters it separates. Having a notion
of topology allows for geometric operations on parts.

• One advantage of namespaces is the automatic promotion of objects –
in this example from perimeters to parts.

• Adding the material information to the geometry makes a part.
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Suites

Simulation control for the many simulations in an analysis.

1. CSV tables
2. Setup directory
3. Creating a suite of simulations
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1. To make a suite of simulations, we need to parameterize the
differences in a simulation. We keep those differences in tables in CSV,
comma separated values, form. The CSV table can be stored in Python
form or read from a file.

2. We also need a set of files for the simulations where the parameters
are going to appear with substitutions of parameters making each
simulation distinct.

3. The Python to instantiate the suite is brief.
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Suites – Managing Multiple Simulations – CSV Tables

table = \

’’’

key, list, var1, var2, var3

k1 , myRuns, 1, 2, 3

k2 , myRuns, 2, 4, 6

k3 , myRuns, 3, 6, 9

’’’
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This example shows the Python form of the CSV table.
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Suites – Managing Multiple Simulations – Setup Directory

• setup/file1
• setup/file2

file1:

The value of the first variable is {var1}.

The value of the second variable is {var2}.

The value of the third variable is {var3}.
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We have two files for each simulation directory. The substitution patterns
are the column names from the CSV table in curly braces.
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Suites – Managing Multiple Simulations

myDb = csv.db()

myDb.parse(string = table)

mySuite = suite.suite(myDb, ’./runs’)

myRuns = mySuite.pick(’myRuns’)

for run in myRuns:

run.setup(src=["setup"], tr=[’*’])
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• We begin by creating a database object to hold the parameters for the
suite.

• We read the list of parameters sets from the table shown earlier.

• In a CSV, we allow multiple tables for constructing complicated suites.
We use list columns in the CSV tables as tags for the rows. We select
the rows for a set of runs for a suite using a tag – in this example, the
tag is myRuns.

• Finally, we can loop over the runs and call setup which creates the
directory for each simulation in the suite. We tell it the source directory
to look for files. We can copy files from the source directory. We can
softlink to files from the source directory. We can translate files from
the source directory – that is we read the file and substitute for the
expressions in curly braces. In this example we are only translating the
files.
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Suites – Managing Multiple Simulations

(:-> ls -CFR runs

runs:

k1/ k2/ k3/

runs/k1:

file1 file2

runs/k2:

file1 file2

runs/k3:

file1 file2

The contents of runs/k1/file1 is

The value of the first variable is 1.

The value of the second variable is 2.

The value of the third variable is 3.
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The result for this example is a runs directory with prepared for
simulations k1, k2 and k3. Each directory contains the files file1 and file2.
The contents of file1 with the curly braced parameters replaced for the k1
is shown.
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Input Files

1. Flag
2. Rage
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We manage the contruction of input files because of

• the volume of information in input files,

• the duplicate information within an input file,

• the duplicate information between input files,

• the duplicate information between input files for different codes,

• and the connections between the geometry and mesh and the material
information.

The duplicate information and the connnections need to be placed in the
input file in a robust and consistent manner. The problem of input file
construction demands automation. Even more so when making suites of
calculations.
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Input Files – Separate Input File Format from Content – Flag

d=flag.Deck()

i=flag.Instance(’/stuff’,a=1)

d.addb(i)

d.addb(i.child(’foo’,b=2))

print(d)

mk /stuff

a = 1

mk /stuff/foo

b = 2
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• We separate the format of the information in the input file from the
values.

• We store the values in a tree structure (deck, instance and block
objects).

• We use specializations of the objects (flag.) that know the syntax to
use to write the values.

The tree structures are something that can be manipulated to maintain
consistent information. When we print the tree structures, we get the input
file in the correct syntax.
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Input Files – Separate Input File Format from Content – Rage

d=rage.Deck()

d.add(a=1,b=2)

d.addi(5,c=3)

ib=rage.ifBlock(’foo .eq. True’,d=4)

d.addb(ib)

print(d)

a = 1

b = 2

c(5) = 3

if (foo .eq. True) then

d = 4

endif
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Meshing

1. Single block
2. Multi-block
3. Partial face match
4. Dendrites
5. Parts
6. Feature painting
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Our meshing library is

1. block structured which makes it practical to align lines in the mesh with
expected symmetries in the calculation,

2. multi-block which makes each block a large ”element” within the overall
mesh – provides unstructured mesh flexibility,

3. partial face matching which reduces the number of blocks into which
the problem is split,

4. dentritic which allows direction control with size control,

5. part aware so that topology information from the geometry can be
carried across to the topology of the mesh

6. and makes volume fractions for parts without a conforming mesh.

In addition, we can spin the 2D meshes into 3D meshes.
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Meshing – Single Block Mesh

altair.contours2Segments(cntr, seg)

seg.c01.equalArcDistrib(npts=3)

seg.c02.equalArcDistrib(npts=3)

seg.c03.equalArcDistrib(npts=4)

seg.c04.equalArcDistrib(npts=len(seg.c03))

seg.c05.equalArcDistrib(npts=len(seg.c01+seg.c02))

blk.exmpl1 = altair.block4(iMin=seg.c03, iMax=seg.c04,

jMin=seg.c05, jMax=seg.c01+seg.c02,

material=mat.Cu)

altair.finalize()
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In this example, we promote the contours to segments using
contours2Segments and then specify the number of points to discretize
the segments, making the segments 1D meshes. Note that we can
enforce consistency by specifying the number of points on a segment in
terms of the number of points on another segment as shown with segment
c04. When we have discretized the segments bounding a block, we use a
block call to construct the block based on the surrounding segments.
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Meshing – Single Block Mesh

Los Alamos National Laboratory January 6, 2020 | 49



Los Alamos National Laboratory January 6, 2020 | 50



Meshing – Multi-Block, Partial Face Match

altair.contours2Segments(cntr, seg)

seg.c01.equalArcDistrib(npts=3)

.

.

.

seg.c10.equalArcDistrib(npts=len(seg.c09))

blk.exmpl1 = altair.block4(iMin=seg.c03, iMax=seg.c06+seg.c09,

jMin=seg.c05, jMax=seg.c01,

material=mat.Cu)

blk.exmpl2 = altair.block4(iMin=seg.c06, iMax=seg.c04,

jMin=seg.c07, jMax=seg.c08,

material=mat.Cu)

blk.exmpl3 = altair.block4(iMin=seg.c09, iMax=seg.c10,

jMin=seg.c08, jMax=seg.c02,

material=mat.Cu)

altair.finalize()
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• Using the segments in multiple blocks connects the blocks.

• Adding segments together make longer segments which is our
mechanism for partial face matching.

• Using the individual segments in one set of blocks (c06 in the second
block and c09 in the third block) and using the sum in another
(seg.c06+seg.c09 in the first block) enforces the connectivity for partial
face matching.
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Meshing – Partial Face Match
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Meshing – Dendritic Meshing

altair.contours2Segments(cntr, seg)

seg.c01.equalArcDistrib(npts=3)

.

.

.

seg.c07.equalArcDistrib(npts=len(seg.c02))

blk.exmpl1 = altair.block4(iMin=seg.c03, iMax=seg.c06,

jMin=seg.c05, jMax=seg.c01,

material=mat.Cu, feather=altair.fthr())

blk.exmpl2 = altair.block4(iMin=seg.c06, iMax=seg.c04,

jMin=seg.c07, jMax=seg.c02,

material=mat.Cu, feather=altair.fthr())

altair.finalize()
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Choosing different resolutions for opposite faces of a block (iMin/iMax or
jMin/jMax) allows greater control of resolutions in a problem. We then
adjust the resolution across the block by feathering out the change in a
sequence of dendrites where mesh lines terminate.
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Meshing – Dendritic Meshing

Los Alamos National Laboratory January 6, 2020 | 57



The key to the algorithm is to pick the order that the edges are removed,
calculate the number of edges to remove for each column and do so in
order.
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Meshing – Parts Based Meshing

1. Start with parts.
2. Promote the materials from physical material objects to

simulation material objects.
3. Promote parts to quilts.
4. Create the segments.
5. Distribute points on the segments.
6. Create the blocks.
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• We define a topology for the geometry so that we can consistently
manipulate the geometry.

• We define a topology for the mesh with the boundary meshes.

• In parts based meshing, we carry over the topology from the geometry
to the mesh to eliminate needlessly specifying the topology twice.
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Meshing – Parts Based Meshing

parts.simulateMaterials(prt, mat)

parts.parts2Quilts(prt, qlt)

parts.sew(qlt)

parts.makeSegments(qlt)

myFrame = qlt.house.getFrame()

myFrame.iMin.equalArcDistrib(npts=3)

myFrame.jMin.equalArcDistrib(npts=4)

myFrame.copy()

parts.quilts2Blocks(qlt, blk)

altair.finalize()
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In this example:

• We convert the physical materials on the parts to simulation materials.

• We then convert the parts to a quilts – a mesh block that has not been
filled with zones.

• We get the frame – which holds the segments for the part – and set the
resolutions.

• Finally, we call quilts2Blocks to fill in the zones.
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Meshing – Parts Based Meshing
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This instance indicates the principal problem with the automatic transfer of
the topology. The topology of the geometry does not have a notion of an i
direction or a j direction. The automatic transfer may not give the desired
alignment. In the example, this problem is further exacerbated by the fact
that the initial geometry has 5 sides rather than 4.
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Meshing – Parts Based Meshing with Corner Control

sel.minusR = gwiz.extreme(’-r’)

...

pnt.leftBottom = sel.minusR(cntr.c03)

...

sel.nearLeftBottom = gwiz.nearest(pnt.leftBottom)

...

qlt.house.corner(sel.nearRightTop)

qlt.house.corner(sel.nearRightBottom)

qlt.house.corner(sel.nearLeftTop)

qlt.house.corner(sel.nearLeftBottom)

...
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• We can manually intervene with control points.

• We call the control points corners.

• There are four corners per block.

• We first select the points using extremes of the contours, then locate
the nearest points of the perimeter. After adjusting the resolutions, we
get the same single block mesh.

• This is a place where our language needs work.
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Meshing – Parts Based Meshing with Corner Control
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Conclusion

• We develop the contour file format, Python contour methods,
CSG methods and LCARS to help users manage the geometry
of their simulations.

• We make tools to parse CSV tables and produce setups for
suites of simulations.

• We provide tools to separate the format from the values in an
input file so that users can consistently construct input files.

• We have written a multi-block, partial face matching, dendritic,
part aware meshing library with which users can make boundary
fitted meshes.
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